Metamath Proof Explorer


Theorem eltop

Description: Membership in a topology, expressed without quantifiers. (Contributed by NM, 19-Jul-2006)

Ref Expression
Assertion eltop
|- ( J e. Top -> ( A e. J <-> A C_ U. ( J i^i ~P A ) ) )

Proof

Step Hyp Ref Expression
1 tgtop
 |-  ( J e. Top -> ( topGen ` J ) = J )
2 1 eleq2d
 |-  ( J e. Top -> ( A e. ( topGen ` J ) <-> A e. J ) )
3 eltg
 |-  ( J e. Top -> ( A e. ( topGen ` J ) <-> A C_ U. ( J i^i ~P A ) ) )
4 2 3 bitr3d
 |-  ( J e. Top -> ( A e. J <-> A C_ U. ( J i^i ~P A ) ) )