Metamath Proof Explorer


Theorem eluzfz2

Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 13-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion eluzfz2
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) )

Proof

Step Hyp Ref Expression
1 eluzelz
 |-  ( N e. ( ZZ>= ` M ) -> N e. ZZ )
2 uzid
 |-  ( N e. ZZ -> N e. ( ZZ>= ` N ) )
3 1 2 syl
 |-  ( N e. ( ZZ>= ` M ) -> N e. ( ZZ>= ` N ) )
4 eluzfz
 |-  ( ( N e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` N ) ) -> N e. ( M ... N ) )
5 3 4 mpdan
 |-  ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) )