Description: Substitution of equal classes in binary relation. (Contributed by Peter Mazsa, 14-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | eqbrtr | |- ( ( A = B /\ B R C ) -> A R C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 | |- ( A = B -> ( A R C <-> B R C ) ) |
|
2 | 1 | biimpar | |- ( ( A = B /\ B R C ) -> A R C ) |