Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqeltrrid.1 | |- B = A |
|
eqeltrrid.2 | |- ( ph -> B e. C ) |
||
Assertion | eqeltrrid | |- ( ph -> A e. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrid.1 | |- B = A |
|
2 | eqeltrrid.2 | |- ( ph -> B e. C ) |
|
3 | 1 | eqcomi | |- A = B |
4 | 3 2 | eqeltrid | |- ( ph -> A e. C ) |