Metamath Proof Explorer


Theorem eqeltrrid

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eqeltrrid.1
|- B = A
eqeltrrid.2
|- ( ph -> B e. C )
Assertion eqeltrrid
|- ( ph -> A e. C )

Proof

Step Hyp Ref Expression
1 eqeltrrid.1
 |-  B = A
2 eqeltrrid.2
 |-  ( ph -> B e. C )
3 1 eqcomi
 |-  A = B
4 3 2 eqeltrid
 |-  ( ph -> A e. C )