Metamath Proof Explorer


Theorem eqfunressuc

Description: Law for equality of restriction to successors. This is primarily useful when X is an ordinal, but it does not require that. (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Assertion eqfunressuc
|- ( ( ( Fun F /\ Fun G ) /\ ( F |` X ) = ( G |` X ) /\ ( X e. dom F /\ X e. dom G /\ ( F ` X ) = ( G ` X ) ) ) -> ( F |` suc X ) = ( G |` suc X ) )

Proof

Step Hyp Ref Expression
1 eqfunresadj
 |-  ( ( ( Fun F /\ Fun G ) /\ ( F |` X ) = ( G |` X ) /\ ( X e. dom F /\ X e. dom G /\ ( F ` X ) = ( G ` X ) ) ) -> ( F |` ( X u. { X } ) ) = ( G |` ( X u. { X } ) ) )
2 df-suc
 |-  suc X = ( X u. { X } )
3 2 reseq2i
 |-  ( F |` suc X ) = ( F |` ( X u. { X } ) )
4 2 reseq2i
 |-  ( G |` suc X ) = ( G |` ( X u. { X } ) )
5 1 3 4 3eqtr4g
 |-  ( ( ( Fun F /\ Fun G ) /\ ( F |` X ) = ( G |` X ) /\ ( X e. dom F /\ X e. dom G /\ ( F ` X ) = ( G ` X ) ) ) -> ( F |` suc X ) = ( G |` suc X ) )