Description: Law for equality of restriction to successors. This is primarily useful when X is an ordinal, but it does not require that. (Contributed by Scott Fenton, 6-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eqfunressuc | |- ( ( ( Fun F /\ Fun G ) /\ ( F |` X ) = ( G |` X ) /\ ( X e. dom F /\ X e. dom G /\ ( F ` X ) = ( G ` X ) ) ) -> ( F |` suc X ) = ( G |` suc X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfunresadj | |- ( ( ( Fun F /\ Fun G ) /\ ( F |` X ) = ( G |` X ) /\ ( X e. dom F /\ X e. dom G /\ ( F ` X ) = ( G ` X ) ) ) -> ( F |` ( X u. { X } ) ) = ( G |` ( X u. { X } ) ) ) |
|
2 | df-suc | |- suc X = ( X u. { X } ) |
|
3 | 2 | reseq2i | |- ( F |` suc X ) = ( F |` ( X u. { X } ) ) |
4 | 2 | reseq2i | |- ( G |` suc X ) = ( G |` ( X u. { X } ) ) |
5 | 1 3 4 | 3eqtr4g | |- ( ( ( Fun F /\ Fun G ) /\ ( F |` X ) = ( G |` X ) /\ ( X e. dom F /\ X e. dom G /\ ( F ` X ) = ( G ` X ) ) ) -> ( F |` suc X ) = ( G |` suc X ) ) |