Metamath Proof Explorer


Theorem equsv

Description: If a formula does not contain a variable x , then it is equivalent to the corresponding prototype of substitution with a fresh variable (see sb6 ). (Contributed by BJ, 23-Jul-2023)

Ref Expression
Assertion equsv
|- ( A. x ( x = y -> ph ) <-> ph )

Proof

Step Hyp Ref Expression
1 19.23v
 |-  ( A. x ( x = y -> ph ) <-> ( E. x x = y -> ph ) )
2 ax6ev
 |-  E. x x = y
3 2 a1bi
 |-  ( ph <-> ( E. x x = y -> ph ) )
4 1 3 bitr4i
 |-  ( A. x ( x = y -> ph ) <-> ph )