Metamath Proof Explorer


Theorem eupthiswlk

Description: An Eulerian path is a walk. (Contributed by AV, 6-Apr-2021)

Ref Expression
Assertion eupthiswlk
|- ( F ( EulerPaths ` G ) P -> F ( Walks ` G ) P )

Proof

Step Hyp Ref Expression
1 eupthistrl
 |-  ( F ( EulerPaths ` G ) P -> F ( Trails ` G ) P )
2 trliswlk
 |-  ( F ( Trails ` G ) P -> F ( Walks ` G ) P )
3 1 2 syl
 |-  ( F ( EulerPaths ` G ) P -> F ( Walks ` G ) P )