Metamath Proof Explorer


Theorem evl1fval1

Description: Value of the simple/same ring evaluation map function for univariate polynomials. (Contributed by AV, 11-Sep-2019)

Ref Expression
Hypotheses evl1fval1.q
|- Q = ( eval1 ` R )
evl1fval1.b
|- B = ( Base ` R )
Assertion evl1fval1
|- Q = ( R evalSub1 B )

Proof

Step Hyp Ref Expression
1 evl1fval1.q
 |-  Q = ( eval1 ` R )
2 evl1fval1.b
 |-  B = ( Base ` R )
3 1 2 evl1fval1lem
 |-  ( R e. _V -> Q = ( R evalSub1 B ) )
4 fvprc
 |-  ( -. R e. _V -> ( eval1 ` R ) = (/) )
5 1 4 eqtrid
 |-  ( -. R e. _V -> Q = (/) )
6 reldmevls1
 |-  Rel dom evalSub1
7 6 ovprc1
 |-  ( -. R e. _V -> ( R evalSub1 B ) = (/) )
8 5 7 eqtr4d
 |-  ( -. R e. _V -> Q = ( R evalSub1 B ) )
9 3 8 pm2.61i
 |-  Q = ( R evalSub1 B )