Metamath Proof Explorer


Theorem exbii

Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994)

Ref Expression
Hypothesis exbii.1
|- ( ph <-> ps )
Assertion exbii
|- ( E. x ph <-> E. x ps )

Proof

Step Hyp Ref Expression
1 exbii.1
 |-  ( ph <-> ps )
2 exbi
 |-  ( A. x ( ph <-> ps ) -> ( E. x ph <-> E. x ps ) )
3 2 1 mpg
 |-  ( E. x ph <-> E. x ps )