Metamath Proof Explorer


Theorem exlimdvv

Description: Deduction form of Theorem 19.23 of Margaris p. 90, see 19.23 . (Contributed by NM, 31-Jul-1995)

Ref Expression
Hypothesis exlimdvv.1
|- ( ph -> ( ps -> ch ) )
Assertion exlimdvv
|- ( ph -> ( E. x E. y ps -> ch ) )

Proof

Step Hyp Ref Expression
1 exlimdvv.1
 |-  ( ph -> ( ps -> ch ) )
2 1 exlimdv
 |-  ( ph -> ( E. y ps -> ch ) )
3 2 exlimdv
 |-  ( ph -> ( E. x E. y ps -> ch ) )