Metamath Proof Explorer


Theorem exmoeu

Description: Existence is equivalent to uniqueness implying existential uniqueness. (Contributed by NM, 5-Apr-2004) (Proof shortened by Wolf Lammen, 5-Dec-2018) (Proof shortened by BJ, 7-Oct-2022)

Ref Expression
Assertion exmoeu
|- ( E. x ph <-> ( E* x ph -> E! x ph ) )

Proof

Step Hyp Ref Expression
1 exmoeub
 |-  ( E. x ph -> ( E* x ph <-> E! x ph ) )
2 1 biimpd
 |-  ( E. x ph -> ( E* x ph -> E! x ph ) )
3 nexmo
 |-  ( -. E. x ph -> E* x ph )
4 3 con1i
 |-  ( -. E* x ph -> E. x ph )
5 euex
 |-  ( E! x ph -> E. x ph )
6 4 5 ja
 |-  ( ( E* x ph -> E! x ph ) -> E. x ph )
7 2 6 impbii
 |-  ( E. x ph <-> ( E* x ph -> E! x ph ) )