Description: The import-export theorem ( impexp ) for biconditionals (deduction form). (Contributed by Zhi Wang, 3-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | exp12bd.1 | |- ( ph -> ( ( ( ps /\ ch ) -> th ) <-> ( ( ta /\ et ) -> ze ) ) ) |
|
| Assertion | exp12bd | |- ( ph -> ( ( ps -> ( ch -> th ) ) <-> ( ta -> ( et -> ze ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp12bd.1 | |- ( ph -> ( ( ( ps /\ ch ) -> th ) <-> ( ( ta /\ et ) -> ze ) ) ) |
|
| 2 | impexp | |- ( ( ( ps /\ ch ) -> th ) <-> ( ps -> ( ch -> th ) ) ) |
|
| 3 | impexp | |- ( ( ( ta /\ et ) -> ze ) <-> ( ta -> ( et -> ze ) ) ) |
|
| 4 | 1 2 3 | 3bitr3g | |- ( ph -> ( ( ps -> ( ch -> th ) ) <-> ( ta -> ( et -> ze ) ) ) ) |