Metamath Proof Explorer


Theorem exp12bd

Description: The import-export theorem ( impexp ) for biconditionals (deduction form). (Contributed by Zhi Wang, 3-Sep-2024)

Ref Expression
Hypothesis exp12bd.1
|- ( ph -> ( ( ( ps /\ ch ) -> th ) <-> ( ( ta /\ et ) -> ze ) ) )
Assertion exp12bd
|- ( ph -> ( ( ps -> ( ch -> th ) ) <-> ( ta -> ( et -> ze ) ) ) )

Proof

Step Hyp Ref Expression
1 exp12bd.1
 |-  ( ph -> ( ( ( ps /\ ch ) -> th ) <-> ( ( ta /\ et ) -> ze ) ) )
2 impexp
 |-  ( ( ( ps /\ ch ) -> th ) <-> ( ps -> ( ch -> th ) ) )
3 impexp
 |-  ( ( ( ta /\ et ) -> ze ) <-> ( ta -> ( et -> ze ) ) )
4 1 2 3 3bitr3g
 |-  ( ph -> ( ( ps -> ( ch -> th ) ) <-> ( ta -> ( et -> ze ) ) ) )