Metamath Proof Explorer


Theorem exp42

Description: An exportation inference. (Contributed by NM, 26-Apr-1994)

Ref Expression
Hypothesis exp42.1
|- ( ( ( ph /\ ( ps /\ ch ) ) /\ th ) -> ta )
Assertion exp42
|- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )

Proof

Step Hyp Ref Expression
1 exp42.1
 |-  ( ( ( ph /\ ( ps /\ ch ) ) /\ th ) -> ta )
2 1 exp31
 |-  ( ph -> ( ( ps /\ ch ) -> ( th -> ta ) ) )
3 2 expd
 |-  ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )