Metamath Proof Explorer


Theorem exp511

Description: An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009)

Ref Expression
Hypothesis exp511.1
|- ( ( ph /\ ( ( ps /\ ( ch /\ th ) ) /\ ta ) ) -> et )
Assertion exp511
|- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )

Proof

Step Hyp Ref Expression
1 exp511.1
 |-  ( ( ph /\ ( ( ps /\ ( ch /\ th ) ) /\ ta ) ) -> et )
2 1 ex
 |-  ( ph -> ( ( ( ps /\ ( ch /\ th ) ) /\ ta ) -> et ) )
3 2 exp5k
 |-  ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )