Metamath Proof Explorer


Theorem expclz

Description: Closure law for integer exponentiation. (Contributed by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expclz
|- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. CC )

Proof

Step Hyp Ref Expression
1 expclzlem
 |-  ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. ( CC \ { 0 } ) )
2 1 eldifad
 |-  ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. CC )