Metamath Proof Explorer


Theorem f1fun

Description: A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014)

Ref Expression
Assertion f1fun
|- ( F : A -1-1-> B -> Fun F )

Proof

Step Hyp Ref Expression
1 f1fn
 |-  ( F : A -1-1-> B -> F Fn A )
2 fnfun
 |-  ( F Fn A -> Fun F )
3 1 2 syl
 |-  ( F : A -1-1-> B -> Fun F )