Metamath Proof Explorer


Theorem f1of

Description: A one-to-one onto mapping is a mapping. (Contributed by NM, 12-Dec-2003)

Ref Expression
Assertion f1of
|- ( F : A -1-1-onto-> B -> F : A --> B )

Proof

Step Hyp Ref Expression
1 f1of1
 |-  ( F : A -1-1-onto-> B -> F : A -1-1-> B )
2 f1f
 |-  ( F : A -1-1-> B -> F : A --> B )
3 1 2 syl
 |-  ( F : A -1-1-onto-> B -> F : A --> B )