Metamath Proof Explorer


Theorem falorfal

Description: A \/ identity. (Contributed by Anthony Hart, 22-Oct-2010) (Proof shortened by Andrew Salmon, 13-May-2011)

Ref Expression
Assertion falorfal
|- ( ( F. \/ F. ) <-> F. )

Proof

Step Hyp Ref Expression
1 oridm
 |-  ( ( F. \/ F. ) <-> F. )