Metamath Proof Explorer


Theorem feq23d

Description: Equality deduction for functions. (Contributed by NM, 8-Jun-2013)

Ref Expression
Hypotheses feq23d.1
|- ( ph -> A = C )
feq23d.2
|- ( ph -> B = D )
Assertion feq23d
|- ( ph -> ( F : A --> B <-> F : C --> D ) )

Proof

Step Hyp Ref Expression
1 feq23d.1
 |-  ( ph -> A = C )
2 feq23d.2
 |-  ( ph -> B = D )
3 eqidd
 |-  ( ph -> F = F )
4 3 1 2 feq123d
 |-  ( ph -> ( F : A --> B <-> F : C --> D ) )