Description: A filter is a filter base. (Contributed by Jeff Hankins, 2-Sep-2009) (Revised by Mario Carneiro, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | filfbas | |- ( F e. ( Fil ` X ) -> F e. ( fBas ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfil | |- ( F e. ( Fil ` X ) <-> ( F e. ( fBas ` X ) /\ A. x e. ~P X ( ( F i^i ~P x ) =/= (/) -> x e. F ) ) ) |
|
| 2 | 1 | simplbi | |- ( F e. ( Fil ` X ) -> F e. ( fBas ` X ) ) |