Metamath Proof Explorer


Theorem flnn0ohalf

Description: The floor of the half of an odd positive integer is equal to the floor of the half of the integer decreased by 1. (Contributed by AV, 5-Jun-2012)

Ref Expression
Assertion flnn0ohalf
|- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( |_ ` ( N / 2 ) ) = ( |_ ` ( ( N - 1 ) / 2 ) ) )

Proof

Step Hyp Ref Expression
1 nn0ofldiv2
 |-  ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( |_ ` ( N / 2 ) ) = ( ( N - 1 ) / 2 ) )
2 nn0o
 |-  ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN0 )
3 2 nn0zd
 |-  ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. ZZ )
4 flid
 |-  ( ( ( N - 1 ) / 2 ) e. ZZ -> ( |_ ` ( ( N - 1 ) / 2 ) ) = ( ( N - 1 ) / 2 ) )
5 3 4 syl
 |-  ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( |_ ` ( ( N - 1 ) / 2 ) ) = ( ( N - 1 ) / 2 ) )
6 1 5 eqtr4d
 |-  ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( |_ ` ( N / 2 ) ) = ( |_ ` ( ( N - 1 ) / 2 ) ) )