Metamath Proof Explorer


Theorem fnovrn

Description: An operation's value belongs to its range. (Contributed by NM, 10-Feb-2007)

Ref Expression
Assertion fnovrn
|- ( ( F Fn ( A X. B ) /\ C e. A /\ D e. B ) -> ( C F D ) e. ran F )

Proof

Step Hyp Ref Expression
1 opelxpi
 |-  ( ( C e. A /\ D e. B ) -> <. C , D >. e. ( A X. B ) )
2 df-ov
 |-  ( C F D ) = ( F ` <. C , D >. )
3 fnfvelrn
 |-  ( ( F Fn ( A X. B ) /\ <. C , D >. e. ( A X. B ) ) -> ( F ` <. C , D >. ) e. ran F )
4 2 3 eqeltrid
 |-  ( ( F Fn ( A X. B ) /\ <. C , D >. e. ( A X. B ) ) -> ( C F D ) e. ran F )
5 1 4 sylan2
 |-  ( ( F Fn ( A X. B ) /\ ( C e. A /\ D e. B ) ) -> ( C F D ) e. ran F )
6 5 3impb
 |-  ( ( F Fn ( A X. B ) /\ C e. A /\ D e. B ) -> ( C F D ) e. ran F )