Description: A variant on lexicographic order, which sorts first by some function of the base set, and then by a "backup" well-ordering when the function value is equal on both elements. (Contributed by Mario Carneiro, 10-Mar-2013) (Revised by Mario Carneiro, 18-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fnwe.1 | |- T = { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) } |
|
fnwe.2 | |- ( ph -> F : A --> B ) |
||
fnwe.3 | |- ( ph -> R We B ) |
||
fnwe.4 | |- ( ph -> S We A ) |
||
fnwe.5 | |- ( ph -> ( F " w ) e. _V ) |
||
Assertion | fnwe | |- ( ph -> T We A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnwe.1 | |- T = { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) } |
|
2 | fnwe.2 | |- ( ph -> F : A --> B ) |
|
3 | fnwe.3 | |- ( ph -> R We B ) |
|
4 | fnwe.4 | |- ( ph -> S We A ) |
|
5 | fnwe.5 | |- ( ph -> ( F " w ) e. _V ) |
|
6 | eqid | |- { <. u , v >. | ( ( u e. ( B X. A ) /\ v e. ( B X. A ) ) /\ ( ( 1st ` u ) R ( 1st ` v ) \/ ( ( 1st ` u ) = ( 1st ` v ) /\ ( 2nd ` u ) S ( 2nd ` v ) ) ) ) } = { <. u , v >. | ( ( u e. ( B X. A ) /\ v e. ( B X. A ) ) /\ ( ( 1st ` u ) R ( 1st ` v ) \/ ( ( 1st ` u ) = ( 1st ` v ) /\ ( 2nd ` u ) S ( 2nd ` v ) ) ) ) } |
|
7 | eqid | |- ( z e. A |-> <. ( F ` z ) , z >. ) = ( z e. A |-> <. ( F ` z ) , z >. ) |
|
8 | 1 2 3 4 5 6 7 | fnwelem | |- ( ph -> T We A ) |