Description: The complex conjugate of a sum. (Contributed by Paul Chapman, 9-Nov-2007) (Revised by Mario Carneiro, 25-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumre.1 | |- ( ph -> A e. Fin ) |
|
| fsumre.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| Assertion | fsumcj | |- ( ph -> ( * ` sum_ k e. A B ) = sum_ k e. A ( * ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumre.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsumre.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | cjf | |- * : CC --> CC |
|
| 4 | cjadd | |- ( ( x e. CC /\ y e. CC ) -> ( * ` ( x + y ) ) = ( ( * ` x ) + ( * ` y ) ) ) |
|
| 5 | 1 2 3 4 | fsumrelem | |- ( ph -> ( * ` sum_ k e. A B ) = sum_ k e. A ( * ` B ) ) |