Metamath Proof Explorer


Theorem fsumub

Description: An upper bound for a term of a positive finite sum. (Contributed by Thierry Arnoux, 27-Dec-2021)

Ref Expression
Hypotheses fsumub.1
|- ( k = K -> B = D )
fsumub.2
|- ( ph -> A e. Fin )
fsumub.3
|- ( ph -> sum_ k e. A B = C )
fsumub.4
|- ( ( ph /\ k e. A ) -> B e. RR+ )
fsumub.k
|- ( ph -> K e. A )
Assertion fsumub
|- ( ph -> D <_ C )

Proof

Step Hyp Ref Expression
1 fsumub.1
 |-  ( k = K -> B = D )
2 fsumub.2
 |-  ( ph -> A e. Fin )
3 fsumub.3
 |-  ( ph -> sum_ k e. A B = C )
4 fsumub.4
 |-  ( ( ph /\ k e. A ) -> B e. RR+ )
5 fsumub.k
 |-  ( ph -> K e. A )
6 4 rpred
 |-  ( ( ph /\ k e. A ) -> B e. RR )
7 4 rpge0d
 |-  ( ( ph /\ k e. A ) -> 0 <_ B )
8 2 6 7 1 5 fsumge1
 |-  ( ph -> D <_ sum_ k e. A B )
9 8 3 breqtrd
 |-  ( ph -> D <_ C )