Metamath Proof Explorer


Theorem funimaex

Description: The image of a set under any function is also a set. Equivalent of Axiom of Replacement ax-rep . Axiom 39(vi) of Quine p. 284. Compare Exercise 9 of TakeutiZaring p. 29. (Contributed by NM, 17-Nov-2002)

Ref Expression
Hypothesis zfrep5.1
|- B e. _V
Assertion funimaex
|- ( Fun A -> ( A " B ) e. _V )

Proof

Step Hyp Ref Expression
1 zfrep5.1
 |-  B e. _V
2 funimaexg
 |-  ( ( Fun A /\ B e. _V ) -> ( A " B ) e. _V )
3 1 2 mpan2
 |-  ( Fun A -> ( A " B ) e. _V )