Metamath Proof Explorer


Theorem fusgrvtxfi

Description: A finite simple graph has a finite set of vertices. (Contributed by AV, 16-Dec-2020)

Ref Expression
Hypothesis isfusgr.v
|- V = ( Vtx ` G )
Assertion fusgrvtxfi
|- ( G e. FinUSGraph -> V e. Fin )

Proof

Step Hyp Ref Expression
1 isfusgr.v
 |-  V = ( Vtx ` G )
2 1 isfusgr
 |-  ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) )
3 2 simprbi
 |-  ( G e. FinUSGraph -> V e. Fin )