Metamath Proof Explorer


Theorem fz2ssnn0

Description: A finite set of sequential integers that is a subset of NN0 . (Contributed by Thierry Arnoux, 8-Dec-2021)

Ref Expression
Assertion fz2ssnn0
|- ( M e. NN0 -> ( M ... N ) C_ NN0 )

Proof

Step Hyp Ref Expression
1 fzssuz
 |-  ( M ... N ) C_ ( ZZ>= ` M )
2 nn0uz
 |-  NN0 = ( ZZ>= ` 0 )
3 2 eleq2i
 |-  ( M e. NN0 <-> M e. ( ZZ>= ` 0 ) )
4 3 biimpi
 |-  ( M e. NN0 -> M e. ( ZZ>= ` 0 ) )
5 uzss
 |-  ( M e. ( ZZ>= ` 0 ) -> ( ZZ>= ` M ) C_ ( ZZ>= ` 0 ) )
6 4 5 syl
 |-  ( M e. NN0 -> ( ZZ>= ` M ) C_ ( ZZ>= ` 0 ) )
7 6 2 sseqtrrdi
 |-  ( M e. NN0 -> ( ZZ>= ` M ) C_ NN0 )
8 1 7 sstrid
 |-  ( M e. NN0 -> ( M ... N ) C_ NN0 )