Metamath Proof Explorer


Theorem fzof

Description: Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015)

Ref Expression
Assertion fzof
|- ..^ : ( ZZ X. ZZ ) --> ~P ZZ

Proof

Step Hyp Ref Expression
1 fzssz
 |-  ( m ... ( n - 1 ) ) C_ ZZ
2 ovex
 |-  ( m ... ( n - 1 ) ) e. _V
3 2 elpw
 |-  ( ( m ... ( n - 1 ) ) e. ~P ZZ <-> ( m ... ( n - 1 ) ) C_ ZZ )
4 1 3 mpbir
 |-  ( m ... ( n - 1 ) ) e. ~P ZZ
5 4 rgen2w
 |-  A. m e. ZZ A. n e. ZZ ( m ... ( n - 1 ) ) e. ~P ZZ
6 df-fzo
 |-  ..^ = ( m e. ZZ , n e. ZZ |-> ( m ... ( n - 1 ) ) )
7 6 fmpo
 |-  ( A. m e. ZZ A. n e. ZZ ( m ... ( n - 1 ) ) e. ~P ZZ <-> ..^ : ( ZZ X. ZZ ) --> ~P ZZ )
8 5 7 mpbi
 |-  ..^ : ( ZZ X. ZZ ) --> ~P ZZ