Metamath Proof Explorer


Theorem fzossfz

Description: A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015) (Revised by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion fzossfz
|- ( A ..^ B ) C_ ( A ... B )

Proof

Step Hyp Ref Expression
1 elfzofz
 |-  ( x e. ( A ..^ B ) -> x e. ( A ... B ) )
2 1 ssriv
 |-  ( A ..^ B ) C_ ( A ... B )