Step |
Hyp |
Ref |
Expression |
1 |
|
elfzle2 |
|- ( ( N + 1 ) e. ( M ... N ) -> ( N + 1 ) <_ N ) |
2 |
|
elfzel2 |
|- ( ( N + 1 ) e. ( M ... N ) -> N e. ZZ ) |
3 |
2
|
zred |
|- ( ( N + 1 ) e. ( M ... N ) -> N e. RR ) |
4 |
|
ltp1 |
|- ( N e. RR -> N < ( N + 1 ) ) |
5 |
|
peano2re |
|- ( N e. RR -> ( N + 1 ) e. RR ) |
6 |
|
ltnle |
|- ( ( N e. RR /\ ( N + 1 ) e. RR ) -> ( N < ( N + 1 ) <-> -. ( N + 1 ) <_ N ) ) |
7 |
5 6
|
mpdan |
|- ( N e. RR -> ( N < ( N + 1 ) <-> -. ( N + 1 ) <_ N ) ) |
8 |
4 7
|
mpbid |
|- ( N e. RR -> -. ( N + 1 ) <_ N ) |
9 |
3 8
|
syl |
|- ( ( N + 1 ) e. ( M ... N ) -> -. ( N + 1 ) <_ N ) |
10 |
1 9
|
pm2.65i |
|- -. ( N + 1 ) e. ( M ... N ) |
11 |
|
disjsn |
|- ( ( ( M ... N ) i^i { ( N + 1 ) } ) = (/) <-> -. ( N + 1 ) e. ( M ... N ) ) |
12 |
10 11
|
mpbir |
|- ( ( M ... N ) i^i { ( N + 1 ) } ) = (/) |