| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elfzle2 | 
							 |-  ( ( N + 1 ) e. ( M ... N ) -> ( N + 1 ) <_ N )  | 
						
						
							| 2 | 
							
								
							 | 
							elfzel2 | 
							 |-  ( ( N + 1 ) e. ( M ... N ) -> N e. ZZ )  | 
						
						
							| 3 | 
							
								2
							 | 
							zred | 
							 |-  ( ( N + 1 ) e. ( M ... N ) -> N e. RR )  | 
						
						
							| 4 | 
							
								
							 | 
							ltp1 | 
							 |-  ( N e. RR -> N < ( N + 1 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							peano2re | 
							 |-  ( N e. RR -> ( N + 1 ) e. RR )  | 
						
						
							| 6 | 
							
								
							 | 
							ltnle | 
							 |-  ( ( N e. RR /\ ( N + 1 ) e. RR ) -> ( N < ( N + 1 ) <-> -. ( N + 1 ) <_ N ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							mpdan | 
							 |-  ( N e. RR -> ( N < ( N + 1 ) <-> -. ( N + 1 ) <_ N ) )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							mpbid | 
							 |-  ( N e. RR -> -. ( N + 1 ) <_ N )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							syl | 
							 |-  ( ( N + 1 ) e. ( M ... N ) -> -. ( N + 1 ) <_ N )  | 
						
						
							| 10 | 
							
								1 9
							 | 
							pm2.65i | 
							 |-  -. ( N + 1 ) e. ( M ... N )  | 
						
						
							| 11 | 
							
								
							 | 
							disjsn | 
							 |-  ( ( ( M ... N ) i^i { ( N + 1 ) } ) = (/) <-> -. ( N + 1 ) e. ( M ... N ) ) | 
						
						
							| 12 | 
							
								10 11
							 | 
							mpbir | 
							 |-  ( ( M ... N ) i^i { ( N + 1 ) } ) = (/) |