Metamath Proof Explorer


Theorem grastruct

Description: Any representation of a graph G (especially as ordered pair G = <. V , E >. ) is convertible in a representation of the graph as extensible structure. (Contributed by AV, 8-Oct-2020)

Ref Expression
Hypothesis grastruct.h
|- H = { <. ( Base ` ndx ) , ( Vtx ` G ) >. , <. ( .ef ` ndx ) , ( iEdg ` G ) >. }
Assertion grastruct
|- ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) )

Proof

Step Hyp Ref Expression
1 grastruct.h
 |-  H = { <. ( Base ` ndx ) , ( Vtx ` G ) >. , <. ( .ef ` ndx ) , ( iEdg ` G ) >. }
2 fvex
 |-  ( Vtx ` G ) e. _V
3 fvex
 |-  ( iEdg ` G ) e. _V
4 1 struct2grvtx
 |-  ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( Vtx ` H ) = ( Vtx ` G ) )
5 2 3 4 mp2an
 |-  ( Vtx ` H ) = ( Vtx ` G )
6 5 eqcomi
 |-  ( Vtx ` G ) = ( Vtx ` H )
7 1 struct2griedg
 |-  ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( iEdg ` H ) = ( iEdg ` G ) )
8 2 3 7 mp2an
 |-  ( iEdg ` H ) = ( iEdg ` G )
9 8 eqcomi
 |-  ( iEdg ` G ) = ( iEdg ` H )
10 6 9 pm3.2i
 |-  ( ( Vtx ` G ) = ( Vtx ` H ) /\ ( iEdg ` G ) = ( iEdg ` H ) )