| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinvfvi.t |
|- N = ( invg ` G ) |
| 2 |
|
fvi |
|- ( G e. _V -> ( _I ` G ) = G ) |
| 3 |
2
|
fveq2d |
|- ( G e. _V -> ( invg ` ( _I ` G ) ) = ( invg ` G ) ) |
| 4 |
|
base0 |
|- (/) = ( Base ` (/) ) |
| 5 |
|
eqid |
|- ( invg ` (/) ) = ( invg ` (/) ) |
| 6 |
4 5
|
grpinvfn |
|- ( invg ` (/) ) Fn (/) |
| 7 |
|
fn0 |
|- ( ( invg ` (/) ) Fn (/) <-> ( invg ` (/) ) = (/) ) |
| 8 |
6 7
|
mpbi |
|- ( invg ` (/) ) = (/) |
| 9 |
|
fvprc |
|- ( -. G e. _V -> ( _I ` G ) = (/) ) |
| 10 |
9
|
fveq2d |
|- ( -. G e. _V -> ( invg ` ( _I ` G ) ) = ( invg ` (/) ) ) |
| 11 |
|
fvprc |
|- ( -. G e. _V -> ( invg ` G ) = (/) ) |
| 12 |
8 10 11
|
3eqtr4a |
|- ( -. G e. _V -> ( invg ` ( _I ` G ) ) = ( invg ` G ) ) |
| 13 |
3 12
|
pm2.61i |
|- ( invg ` ( _I ` G ) ) = ( invg ` G ) |
| 14 |
1 13
|
eqtr4i |
|- N = ( invg ` ( _I ` G ) ) |