Metamath Proof Explorer


Theorem grpon0

Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1
|- X = ran G
Assertion grpon0
|- ( G e. GrpOp -> X =/= (/) )

Proof

Step Hyp Ref Expression
1 grpfo.1
 |-  X = ran G
2 1 grpolidinv
 |-  ( G e. GrpOp -> E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) )
3 rexn0
 |-  ( E. u e. X A. x e. X ( ( u G x ) = x /\ E. y e. X ( y G x ) = u ) -> X =/= (/) )
4 2 3 syl
 |-  ( G e. GrpOp -> X =/= (/) )