Metamath Proof Explorer


Theorem grstructeld

Description: If any representation of a graph with vertices V and edges E is an element of an arbitrary class C , then any structure with base set V and value E in the slot for edge functions (which is such a representation of a graph with vertices V and edges E ) is an element of this class C . (Contributed by AV, 12-Oct-2020) (Revised by AV, 9-Jun-2021)

Ref Expression
Hypotheses gropeld.g
|- ( ph -> A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) -> g e. C ) )
gropeld.v
|- ( ph -> V e. U )
gropeld.e
|- ( ph -> E e. W )
grstructeld.s
|- ( ph -> S e. X )
grstructeld.f
|- ( ph -> Fun ( S \ { (/) } ) )
grstructeld.d
|- ( ph -> 2 <_ ( # ` dom S ) )
grstructeld.b
|- ( ph -> ( Base ` S ) = V )
grstructeld.e
|- ( ph -> ( .ef ` S ) = E )
Assertion grstructeld
|- ( ph -> S e. C )

Proof

Step Hyp Ref Expression
1 gropeld.g
 |-  ( ph -> A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) -> g e. C ) )
2 gropeld.v
 |-  ( ph -> V e. U )
3 gropeld.e
 |-  ( ph -> E e. W )
4 grstructeld.s
 |-  ( ph -> S e. X )
5 grstructeld.f
 |-  ( ph -> Fun ( S \ { (/) } ) )
6 grstructeld.d
 |-  ( ph -> 2 <_ ( # ` dom S ) )
7 grstructeld.b
 |-  ( ph -> ( Base ` S ) = V )
8 grstructeld.e
 |-  ( ph -> ( .ef ` S ) = E )
9 1 2 3 4 5 6 7 8 grstructd
 |-  ( ph -> [. S / g ]. g e. C )
10 sbcel1v
 |-  ( [. S / g ]. g e. C <-> S e. C )
11 9 10 sylib
 |-  ( ph -> S e. C )