Description: If any representation of a graph with vertices V and edges E is an element of an arbitrary class C , then any structure with base set V and value E in the slot for edge functions (which is such a representation of a graph with vertices V and edges E ) is an element of this class C . (Contributed by AV, 12-Oct-2020) (Revised by AV, 9-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gropeld.g | |- ( ph -> A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) -> g e. C ) ) |
|
gropeld.v | |- ( ph -> V e. U ) |
||
gropeld.e | |- ( ph -> E e. W ) |
||
grstructeld.s | |- ( ph -> S e. X ) |
||
grstructeld.f | |- ( ph -> Fun ( S \ { (/) } ) ) |
||
grstructeld.d | |- ( ph -> 2 <_ ( # ` dom S ) ) |
||
grstructeld.b | |- ( ph -> ( Base ` S ) = V ) |
||
grstructeld.e | |- ( ph -> ( .ef ` S ) = E ) |
||
Assertion | grstructeld | |- ( ph -> S e. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gropeld.g | |- ( ph -> A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = E ) -> g e. C ) ) |
|
2 | gropeld.v | |- ( ph -> V e. U ) |
|
3 | gropeld.e | |- ( ph -> E e. W ) |
|
4 | grstructeld.s | |- ( ph -> S e. X ) |
|
5 | grstructeld.f | |- ( ph -> Fun ( S \ { (/) } ) ) |
|
6 | grstructeld.d | |- ( ph -> 2 <_ ( # ` dom S ) ) |
|
7 | grstructeld.b | |- ( ph -> ( Base ` S ) = V ) |
|
8 | grstructeld.e | |- ( ph -> ( .ef ` S ) = E ) |
|
9 | 1 2 3 4 5 6 7 8 | grstructd | |- ( ph -> [. S / g ]. g e. C ) |
10 | sbcel1v | |- ( [. S / g ]. g e. C <-> S e. C ) |
|
11 | 9 10 | sylib | |- ( ph -> S e. C ) |