| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptcl.b |
|- B = ( Base ` G ) |
| 2 |
|
gsummptcl.g |
|- ( ph -> G e. CMnd ) |
| 3 |
|
gsummptcl.n |
|- ( ph -> N e. Fin ) |
| 4 |
|
gsummptcl.e |
|- ( ph -> A. i e. N X e. B ) |
| 5 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 6 |
|
eqid |
|- ( i e. N |-> X ) = ( i e. N |-> X ) |
| 7 |
6
|
fmpt |
|- ( A. i e. N X e. B <-> ( i e. N |-> X ) : N --> B ) |
| 8 |
4 7
|
sylib |
|- ( ph -> ( i e. N |-> X ) : N --> B ) |
| 9 |
6
|
fnmpt |
|- ( A. i e. N X e. B -> ( i e. N |-> X ) Fn N ) |
| 10 |
4 9
|
syl |
|- ( ph -> ( i e. N |-> X ) Fn N ) |
| 11 |
|
fvexd |
|- ( ph -> ( 0g ` G ) e. _V ) |
| 12 |
10 3 11
|
fndmfifsupp |
|- ( ph -> ( i e. N |-> X ) finSupp ( 0g ` G ) ) |
| 13 |
1 5 2 3 8 12
|
gsumcl |
|- ( ph -> ( G gsum ( i e. N |-> X ) ) e. B ) |