| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptfssub.b |
|- B = ( Base ` G ) |
| 2 |
|
gsummptfssub.z |
|- .0. = ( 0g ` G ) |
| 3 |
|
gsummptfssub.s |
|- .- = ( -g ` G ) |
| 4 |
|
gsummptfssub.g |
|- ( ph -> G e. Abel ) |
| 5 |
|
gsummptfssub.a |
|- ( ph -> A e. V ) |
| 6 |
|
gsummptfssub.c |
|- ( ( ph /\ x e. A ) -> C e. B ) |
| 7 |
|
gsummptfssub.d |
|- ( ( ph /\ x e. A ) -> D e. B ) |
| 8 |
|
gsummptfssub.f |
|- ( ph -> F = ( x e. A |-> C ) ) |
| 9 |
|
gsummptfssub.h |
|- ( ph -> H = ( x e. A |-> D ) ) |
| 10 |
|
gsummptfssub.w |
|- ( ph -> F finSupp .0. ) |
| 11 |
|
gsummptfssub.v |
|- ( ph -> H finSupp .0. ) |
| 12 |
5 6 7 8 9
|
offval2 |
|- ( ph -> ( F oF .- H ) = ( x e. A |-> ( C .- D ) ) ) |
| 13 |
12
|
eqcomd |
|- ( ph -> ( x e. A |-> ( C .- D ) ) = ( F oF .- H ) ) |
| 14 |
13
|
oveq2d |
|- ( ph -> ( G gsum ( x e. A |-> ( C .- D ) ) ) = ( G gsum ( F oF .- H ) ) ) |
| 15 |
8 6
|
fmpt3d |
|- ( ph -> F : A --> B ) |
| 16 |
9 7
|
fmpt3d |
|- ( ph -> H : A --> B ) |
| 17 |
1 2 3 4 5 15 16 10 11
|
gsumsub |
|- ( ph -> ( G gsum ( F oF .- H ) ) = ( ( G gsum F ) .- ( G gsum H ) ) ) |
| 18 |
14 17
|
eqtrd |
|- ( ph -> ( G gsum ( x e. A |-> ( C .- D ) ) ) = ( ( G gsum F ) .- ( G gsum H ) ) ) |