Metamath Proof Explorer


Theorem gsummptfssub

Description: The difference of two group sums expressed as mappings. (Contributed by AV, 7-Nov-2019)

Ref Expression
Hypotheses gsummptfssub.b
|- B = ( Base ` G )
gsummptfssub.z
|- .0. = ( 0g ` G )
gsummptfssub.s
|- .- = ( -g ` G )
gsummptfssub.g
|- ( ph -> G e. Abel )
gsummptfssub.a
|- ( ph -> A e. V )
gsummptfssub.c
|- ( ( ph /\ x e. A ) -> C e. B )
gsummptfssub.d
|- ( ( ph /\ x e. A ) -> D e. B )
gsummptfssub.f
|- ( ph -> F = ( x e. A |-> C ) )
gsummptfssub.h
|- ( ph -> H = ( x e. A |-> D ) )
gsummptfssub.w
|- ( ph -> F finSupp .0. )
gsummptfssub.v
|- ( ph -> H finSupp .0. )
Assertion gsummptfssub
|- ( ph -> ( G gsum ( x e. A |-> ( C .- D ) ) ) = ( ( G gsum F ) .- ( G gsum H ) ) )

Proof

Step Hyp Ref Expression
1 gsummptfssub.b
 |-  B = ( Base ` G )
2 gsummptfssub.z
 |-  .0. = ( 0g ` G )
3 gsummptfssub.s
 |-  .- = ( -g ` G )
4 gsummptfssub.g
 |-  ( ph -> G e. Abel )
5 gsummptfssub.a
 |-  ( ph -> A e. V )
6 gsummptfssub.c
 |-  ( ( ph /\ x e. A ) -> C e. B )
7 gsummptfssub.d
 |-  ( ( ph /\ x e. A ) -> D e. B )
8 gsummptfssub.f
 |-  ( ph -> F = ( x e. A |-> C ) )
9 gsummptfssub.h
 |-  ( ph -> H = ( x e. A |-> D ) )
10 gsummptfssub.w
 |-  ( ph -> F finSupp .0. )
11 gsummptfssub.v
 |-  ( ph -> H finSupp .0. )
12 5 6 7 8 9 offval2
 |-  ( ph -> ( F oF .- H ) = ( x e. A |-> ( C .- D ) ) )
13 12 eqcomd
 |-  ( ph -> ( x e. A |-> ( C .- D ) ) = ( F oF .- H ) )
14 13 oveq2d
 |-  ( ph -> ( G gsum ( x e. A |-> ( C .- D ) ) ) = ( G gsum ( F oF .- H ) ) )
15 8 6 fmpt3d
 |-  ( ph -> F : A --> B )
16 9 7 fmpt3d
 |-  ( ph -> H : A --> B )
17 1 2 3 4 5 15 16 10 11 gsumsub
 |-  ( ph -> ( G gsum ( F oF .- H ) ) = ( ( G gsum F ) .- ( G gsum H ) ) )
18 14 17 eqtrd
 |-  ( ph -> ( G gsum ( x e. A |-> ( C .- D ) ) ) = ( ( G gsum F ) .- ( G gsum H ) ) )