| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashf |
|- # : _V --> ( NN0 u. { +oo } ) |
| 2 |
|
ffn |
|- ( # : _V --> ( NN0 u. { +oo } ) -> # Fn _V ) |
| 3 |
|
fnresin2 |
|- ( # Fn _V -> ( # |` ( A i^i _V ) ) Fn ( A i^i _V ) ) |
| 4 |
1 2 3
|
mp2b |
|- ( # |` ( A i^i _V ) ) Fn ( A i^i _V ) |
| 5 |
|
inv1 |
|- ( A i^i _V ) = A |
| 6 |
5
|
reseq2i |
|- ( # |` ( A i^i _V ) ) = ( # |` A ) |
| 7 |
|
fneq12 |
|- ( ( ( # |` ( A i^i _V ) ) = ( # |` A ) /\ ( A i^i _V ) = A ) -> ( ( # |` ( A i^i _V ) ) Fn ( A i^i _V ) <-> ( # |` A ) Fn A ) ) |
| 8 |
6 5 7
|
mp2an |
|- ( ( # |` ( A i^i _V ) ) Fn ( A i^i _V ) <-> ( # |` A ) Fn A ) |
| 9 |
4 8
|
mpbi |
|- ( # |` A ) Fn A |