Metamath Proof Explorer


Theorem hbxfreq

Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfrbi for equivalence version. (Contributed by NM, 21-Aug-2007)

Ref Expression
Hypotheses hbxfr.1
|- A = B
hbxfr.2
|- ( y e. B -> A. x y e. B )
Assertion hbxfreq
|- ( y e. A -> A. x y e. A )

Proof

Step Hyp Ref Expression
1 hbxfr.1
 |-  A = B
2 hbxfr.2
 |-  ( y e. B -> A. x y e. B )
3 1 eleq2i
 |-  ( y e. A <-> y e. B )
4 3 2 hbxfrbi
 |-  ( y e. A -> A. x y e. A )