| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmap1eu.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmap1eu.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmap1eu.v |
|- V = ( Base ` U ) |
| 4 |
|
hdmap1eu.o |
|- .0. = ( 0g ` U ) |
| 5 |
|
hdmap1eu.n |
|- N = ( LSpan ` U ) |
| 6 |
|
hdmap1eu.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 7 |
|
hdmap1eu.d |
|- D = ( Base ` C ) |
| 8 |
|
hdmap1eu.l |
|- L = ( LSpan ` C ) |
| 9 |
|
hdmap1eu.m |
|- M = ( ( mapd ` K ) ` W ) |
| 10 |
|
hdmap1eu.i |
|- I = ( ( HDMap1 ` K ) ` W ) |
| 11 |
|
hdmap1eu.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 12 |
|
hdmap1eu.mn |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) ) |
| 13 |
|
hdmap1eu.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 14 |
|
hdmap1eu.f |
|- ( ph -> F e. D ) |
| 15 |
|
hdmap1eu.t |
|- ( ph -> T e. V ) |
| 16 |
|
eqid |
|- ( -g ` U ) = ( -g ` U ) |
| 17 |
|
eqid |
|- ( -g ` C ) = ( -g ` C ) |
| 18 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
| 19 |
|
eqid |
|- ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) |
| 20 |
19
|
hdmap1cbv |
|- ( x e. _V |-> if ( ( 2nd ` x ) = .0. , ( 0g ` C ) , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( L ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) ( -g ` U ) ( 2nd ` x ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` x ) ) ( -g ` C ) h ) } ) ) ) ) ) = ( w e. _V |-> if ( ( 2nd ` w ) = .0. , ( 0g ` C ) , ( iota_ g e. D ( ( M ` ( N ` { ( 2nd ` w ) } ) ) = ( L ` { g } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` w ) ) ( -g ` U ) ( 2nd ` w ) ) } ) ) = ( L ` { ( ( 2nd ` ( 1st ` w ) ) ( -g ` C ) g ) } ) ) ) ) ) |
| 21 |
1 2 3 16 4 5 6 7 17 18 8 9 10 11 12 13 14 15 20
|
hdmap1eulemOLDN |
|- ( ph -> E! y e. D A. z e. V ( -. z e. ( N ` { X , T } ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) ) |