| Step |
Hyp |
Ref |
Expression |
| 1 |
|
homahom.h |
|- H = ( HomA ` C ) |
| 2 |
1
|
homarel |
|- Rel ( X H Y ) |
| 3 |
|
1st2nd |
|- ( ( Rel ( X H Y ) /\ F e. ( X H Y ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 4 |
2 3
|
mpan |
|- ( F e. ( X H Y ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 5 |
|
1st2ndbr |
|- ( ( Rel ( X H Y ) /\ F e. ( X H Y ) ) -> ( 1st ` F ) ( X H Y ) ( 2nd ` F ) ) |
| 6 |
2 5
|
mpan |
|- ( F e. ( X H Y ) -> ( 1st ` F ) ( X H Y ) ( 2nd ` F ) ) |
| 7 |
1
|
homa1 |
|- ( ( 1st ` F ) ( X H Y ) ( 2nd ` F ) -> ( 1st ` F ) = <. X , Y >. ) |
| 8 |
6 7
|
syl |
|- ( F e. ( X H Y ) -> ( 1st ` F ) = <. X , Y >. ) |
| 9 |
8
|
opeq1d |
|- ( F e. ( X H Y ) -> <. ( 1st ` F ) , ( 2nd ` F ) >. = <. <. X , Y >. , ( 2nd ` F ) >. ) |
| 10 |
4 9
|
eqtrd |
|- ( F e. ( X H Y ) -> F = <. <. X , Y >. , ( 2nd ` F ) >. ) |
| 11 |
|
df-ot |
|- <. X , Y , ( 2nd ` F ) >. = <. <. X , Y >. , ( 2nd ` F ) >. |
| 12 |
10 11
|
eqtr4di |
|- ( F e. ( X H Y ) -> F = <. X , Y , ( 2nd ` F ) >. ) |