Metamath Proof Explorer


Theorem hstorth

Description: Orthogonality property of a Hilbert-space-valued state. This is a key feature distinguishing it from a real-valued state. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hstorth
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( B e. CH /\ A C_ ( _|_ ` B ) ) ) -> ( ( S ` A ) .ih ( S ` B ) ) = 0 )

Proof

Step Hyp Ref Expression
1 hstel2
 |-  ( ( ( S e. CHStates /\ A e. CH ) /\ ( B e. CH /\ A C_ ( _|_ ` B ) ) ) -> ( ( ( S ` A ) .ih ( S ` B ) ) = 0 /\ ( S ` ( A vH B ) ) = ( ( S ` A ) +h ( S ` B ) ) ) )
2 1 simpld
 |-  ( ( ( S e. CHStates /\ A e. CH ) /\ ( B e. CH /\ A C_ ( _|_ ` B ) ) ) -> ( ( S ` A ) .ih ( S ` B ) ) = 0 )