Metamath Proof Explorer


Theorem hv2neg

Description: Two ways to express the negative of a vector. (Contributed by NM, 23-May-2005) (New usage is discouraged.)

Ref Expression
Assertion hv2neg
|- ( A e. ~H -> ( 0h -h A ) = ( -u 1 .h A ) )

Proof

Step Hyp Ref Expression
1 ax-hv0cl
 |-  0h e. ~H
2 hvsubval
 |-  ( ( 0h e. ~H /\ A e. ~H ) -> ( 0h -h A ) = ( 0h +h ( -u 1 .h A ) ) )
3 1 2 mpan
 |-  ( A e. ~H -> ( 0h -h A ) = ( 0h +h ( -u 1 .h A ) ) )
4 neg1cn
 |-  -u 1 e. CC
5 hvmulcl
 |-  ( ( -u 1 e. CC /\ A e. ~H ) -> ( -u 1 .h A ) e. ~H )
6 4 5 mpan
 |-  ( A e. ~H -> ( -u 1 .h A ) e. ~H )
7 hvaddid2
 |-  ( ( -u 1 .h A ) e. ~H -> ( 0h +h ( -u 1 .h A ) ) = ( -u 1 .h A ) )
8 6 7 syl
 |-  ( A e. ~H -> ( 0h +h ( -u 1 .h A ) ) = ( -u 1 .h A ) )
9 3 8 eqtrd
 |-  ( A e. ~H -> ( 0h -h A ) = ( -u 1 .h A ) )