Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hv0cl |
|- 0h e. ~H |
2 |
|
hvsubval |
|- ( ( 0h e. ~H /\ A e. ~H ) -> ( 0h -h A ) = ( 0h +h ( -u 1 .h A ) ) ) |
3 |
1 2
|
mpan |
|- ( A e. ~H -> ( 0h -h A ) = ( 0h +h ( -u 1 .h A ) ) ) |
4 |
|
neg1cn |
|- -u 1 e. CC |
5 |
|
hvmulcl |
|- ( ( -u 1 e. CC /\ A e. ~H ) -> ( -u 1 .h A ) e. ~H ) |
6 |
4 5
|
mpan |
|- ( A e. ~H -> ( -u 1 .h A ) e. ~H ) |
7 |
|
hvaddid2 |
|- ( ( -u 1 .h A ) e. ~H -> ( 0h +h ( -u 1 .h A ) ) = ( -u 1 .h A ) ) |
8 |
6 7
|
syl |
|- ( A e. ~H -> ( 0h +h ( -u 1 .h A ) ) = ( -u 1 .h A ) ) |
9 |
3 8
|
eqtrd |
|- ( A e. ~H -> ( 0h -h A ) = ( -u 1 .h A ) ) |