| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neg1cn |
|- -u 1 e. CC |
| 2 |
|
hvmulcl |
|- ( ( -u 1 e. CC /\ C e. ~H ) -> ( -u 1 .h C ) e. ~H ) |
| 3 |
1 2
|
mpan |
|- ( C e. ~H -> ( -u 1 .h C ) e. ~H ) |
| 4 |
|
ax-hvass |
|- ( ( A e. ~H /\ B e. ~H /\ ( -u 1 .h C ) e. ~H ) -> ( ( A +h B ) +h ( -u 1 .h C ) ) = ( A +h ( B +h ( -u 1 .h C ) ) ) ) |
| 5 |
3 4
|
syl3an3 |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) +h ( -u 1 .h C ) ) = ( A +h ( B +h ( -u 1 .h C ) ) ) ) |
| 6 |
|
hvaddcl |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A +h B ) e. ~H ) |
| 7 |
|
hvsubval |
|- ( ( ( A +h B ) e. ~H /\ C e. ~H ) -> ( ( A +h B ) -h C ) = ( ( A +h B ) +h ( -u 1 .h C ) ) ) |
| 8 |
6 7
|
stoic3 |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) -h C ) = ( ( A +h B ) +h ( -u 1 .h C ) ) ) |
| 9 |
|
hvsubval |
|- ( ( B e. ~H /\ C e. ~H ) -> ( B -h C ) = ( B +h ( -u 1 .h C ) ) ) |
| 10 |
9
|
3adant1 |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( B -h C ) = ( B +h ( -u 1 .h C ) ) ) |
| 11 |
10
|
oveq2d |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A +h ( B -h C ) ) = ( A +h ( B +h ( -u 1 .h C ) ) ) ) |
| 12 |
5 8 11
|
3eqtr4d |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) -h C ) = ( A +h ( B -h C ) ) ) |