Description: The Hilbert space scalar product operation is a set. (Contributed by NM, 17-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvmulex | |- .h e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hfvmul | |- .h : ( CC X. ~H ) --> ~H |
|
| 2 | cnex | |- CC e. _V |
|
| 3 | ax-hilex | |- ~H e. _V |
|
| 4 | 2 3 | xpex | |- ( CC X. ~H ) e. _V |
| 5 | fex | |- ( ( .h : ( CC X. ~H ) --> ~H /\ ( CC X. ~H ) e. _V ) -> .h e. _V ) |
|
| 6 | 1 4 5 | mp2an | |- .h e. _V |