Metamath Proof Explorer


Theorem hvsubassi

Description: Hilbert vector space associative law for subtraction. (Contributed by NM, 7-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses hvass.1
|- A e. ~H
hvass.2
|- B e. ~H
hvass.3
|- C e. ~H
Assertion hvsubassi
|- ( ( A -h B ) -h C ) = ( A -h ( B +h C ) )

Proof

Step Hyp Ref Expression
1 hvass.1
 |-  A e. ~H
2 hvass.2
 |-  B e. ~H
3 hvass.3
 |-  C e. ~H
4 hvsubass
 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h B ) -h C ) = ( A -h ( B +h C ) ) )
5 1 2 3 4 mp3an
 |-  ( ( A -h B ) -h C ) = ( A -h ( B +h C ) )