| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hvass.1 |
|- A e. ~H |
| 2 |
|
hvass.2 |
|- B e. ~H |
| 3 |
|
hvass.3 |
|- C e. ~H |
| 4 |
|
hvadd4.4 |
|- D e. ~H |
| 5 |
|
neg1cn |
|- -u 1 e. CC |
| 6 |
5 2
|
hvmulcli |
|- ( -u 1 .h B ) e. ~H |
| 7 |
5 3
|
hvmulcli |
|- ( -u 1 .h C ) e. ~H |
| 8 |
5 4
|
hvmulcli |
|- ( -u 1 .h D ) e. ~H |
| 9 |
5 8
|
hvmulcli |
|- ( -u 1 .h ( -u 1 .h D ) ) e. ~H |
| 10 |
1 6 7 9
|
hvadd4i |
|- ( ( A +h ( -u 1 .h B ) ) +h ( ( -u 1 .h C ) +h ( -u 1 .h ( -u 1 .h D ) ) ) ) = ( ( A +h ( -u 1 .h C ) ) +h ( ( -u 1 .h B ) +h ( -u 1 .h ( -u 1 .h D ) ) ) ) |
| 11 |
5 3 8
|
hvdistr1i |
|- ( -u 1 .h ( C +h ( -u 1 .h D ) ) ) = ( ( -u 1 .h C ) +h ( -u 1 .h ( -u 1 .h D ) ) ) |
| 12 |
11
|
oveq2i |
|- ( ( A +h ( -u 1 .h B ) ) +h ( -u 1 .h ( C +h ( -u 1 .h D ) ) ) ) = ( ( A +h ( -u 1 .h B ) ) +h ( ( -u 1 .h C ) +h ( -u 1 .h ( -u 1 .h D ) ) ) ) |
| 13 |
5 2 8
|
hvdistr1i |
|- ( -u 1 .h ( B +h ( -u 1 .h D ) ) ) = ( ( -u 1 .h B ) +h ( -u 1 .h ( -u 1 .h D ) ) ) |
| 14 |
13
|
oveq2i |
|- ( ( A +h ( -u 1 .h C ) ) +h ( -u 1 .h ( B +h ( -u 1 .h D ) ) ) ) = ( ( A +h ( -u 1 .h C ) ) +h ( ( -u 1 .h B ) +h ( -u 1 .h ( -u 1 .h D ) ) ) ) |
| 15 |
10 12 14
|
3eqtr4i |
|- ( ( A +h ( -u 1 .h B ) ) +h ( -u 1 .h ( C +h ( -u 1 .h D ) ) ) ) = ( ( A +h ( -u 1 .h C ) ) +h ( -u 1 .h ( B +h ( -u 1 .h D ) ) ) ) |
| 16 |
1 6
|
hvaddcli |
|- ( A +h ( -u 1 .h B ) ) e. ~H |
| 17 |
3 8
|
hvaddcli |
|- ( C +h ( -u 1 .h D ) ) e. ~H |
| 18 |
16 17
|
hvsubvali |
|- ( ( A +h ( -u 1 .h B ) ) -h ( C +h ( -u 1 .h D ) ) ) = ( ( A +h ( -u 1 .h B ) ) +h ( -u 1 .h ( C +h ( -u 1 .h D ) ) ) ) |
| 19 |
1 7
|
hvaddcli |
|- ( A +h ( -u 1 .h C ) ) e. ~H |
| 20 |
2 8
|
hvaddcli |
|- ( B +h ( -u 1 .h D ) ) e. ~H |
| 21 |
19 20
|
hvsubvali |
|- ( ( A +h ( -u 1 .h C ) ) -h ( B +h ( -u 1 .h D ) ) ) = ( ( A +h ( -u 1 .h C ) ) +h ( -u 1 .h ( B +h ( -u 1 .h D ) ) ) ) |
| 22 |
15 18 21
|
3eqtr4i |
|- ( ( A +h ( -u 1 .h B ) ) -h ( C +h ( -u 1 .h D ) ) ) = ( ( A +h ( -u 1 .h C ) ) -h ( B +h ( -u 1 .h D ) ) ) |
| 23 |
1 2
|
hvsubvali |
|- ( A -h B ) = ( A +h ( -u 1 .h B ) ) |
| 24 |
3 4
|
hvsubvali |
|- ( C -h D ) = ( C +h ( -u 1 .h D ) ) |
| 25 |
23 24
|
oveq12i |
|- ( ( A -h B ) -h ( C -h D ) ) = ( ( A +h ( -u 1 .h B ) ) -h ( C +h ( -u 1 .h D ) ) ) |
| 26 |
1 3
|
hvsubvali |
|- ( A -h C ) = ( A +h ( -u 1 .h C ) ) |
| 27 |
2 4
|
hvsubvali |
|- ( B -h D ) = ( B +h ( -u 1 .h D ) ) |
| 28 |
26 27
|
oveq12i |
|- ( ( A -h C ) -h ( B -h D ) ) = ( ( A +h ( -u 1 .h C ) ) -h ( B +h ( -u 1 .h D ) ) ) |
| 29 |
22 25 28
|
3eqtr4i |
|- ( ( A -h B ) -h ( C -h D ) ) = ( ( A -h C ) -h ( B -h D ) ) |