Metamath Proof Explorer


Theorem ifbieq12d

Description: Equivalence deduction for conditional operators. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses ifbieq12d.1
|- ( ph -> ( ps <-> ch ) )
ifbieq12d.2
|- ( ph -> A = C )
ifbieq12d.3
|- ( ph -> B = D )
Assertion ifbieq12d
|- ( ph -> if ( ps , A , B ) = if ( ch , C , D ) )

Proof

Step Hyp Ref Expression
1 ifbieq12d.1
 |-  ( ph -> ( ps <-> ch ) )
2 ifbieq12d.2
 |-  ( ph -> A = C )
3 ifbieq12d.3
 |-  ( ph -> B = D )
4 1 ifbid
 |-  ( ph -> if ( ps , A , B ) = if ( ch , A , B ) )
5 2 3 ifeq12d
 |-  ( ph -> if ( ch , A , B ) = if ( ch , C , D ) )
6 4 5 eqtrd
 |-  ( ph -> if ( ps , A , B ) = if ( ch , C , D ) )