Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( ch -> ch ) |
2 |
1
|
olci |
|- ( ( ph -> -. ps ) \/ ( ch -> ch ) ) |
3 |
1
|
olci |
|- ( ( ps -> ph ) \/ ( ch -> ch ) ) |
4 |
2 3
|
pm3.2i |
|- ( ( ( ph -> -. ps ) \/ ( ch -> ch ) ) /\ ( ( ps -> ph ) \/ ( ch -> ch ) ) ) |
5 |
1
|
olci |
|- ( ( ph -> ps ) \/ ( ch -> ch ) ) |
6 |
1
|
olci |
|- ( ( -. ps -> ph ) \/ ( ch -> ch ) ) |
7 |
5 6
|
pm3.2i |
|- ( ( ( ph -> ps ) \/ ( ch -> ch ) ) /\ ( ( -. ps -> ph ) \/ ( ch -> ch ) ) ) |
8 |
|
ifpim123g |
|- ( ( if- ( ph , ch , ch ) -> if- ( ps , ch , ch ) ) <-> ( ( ( ( ph -> -. ps ) \/ ( ch -> ch ) ) /\ ( ( ps -> ph ) \/ ( ch -> ch ) ) ) /\ ( ( ( ph -> ps ) \/ ( ch -> ch ) ) /\ ( ( -. ps -> ph ) \/ ( ch -> ch ) ) ) ) ) |
9 |
4 7 8
|
mpbir2an |
|- ( if- ( ph , ch , ch ) -> if- ( ps , ch , ch ) ) |
10 |
1
|
olci |
|- ( ( ps -> -. ph ) \/ ( ch -> ch ) ) |
11 |
10 5
|
pm3.2i |
|- ( ( ( ps -> -. ph ) \/ ( ch -> ch ) ) /\ ( ( ph -> ps ) \/ ( ch -> ch ) ) ) |
12 |
1
|
olci |
|- ( ( -. ph -> ps ) \/ ( ch -> ch ) ) |
13 |
3 12
|
pm3.2i |
|- ( ( ( ps -> ph ) \/ ( ch -> ch ) ) /\ ( ( -. ph -> ps ) \/ ( ch -> ch ) ) ) |
14 |
|
ifpim123g |
|- ( ( if- ( ps , ch , ch ) -> if- ( ph , ch , ch ) ) <-> ( ( ( ( ps -> -. ph ) \/ ( ch -> ch ) ) /\ ( ( ph -> ps ) \/ ( ch -> ch ) ) ) /\ ( ( ( ps -> ph ) \/ ( ch -> ch ) ) /\ ( ( -. ph -> ps ) \/ ( ch -> ch ) ) ) ) ) |
15 |
11 13 14
|
mpbir2an |
|- ( if- ( ps , ch , ch ) -> if- ( ph , ch , ch ) ) |
16 |
9 15
|
impbii |
|- ( if- ( ph , ch , ch ) <-> if- ( ps , ch , ch ) ) |