Step |
Hyp |
Ref |
Expression |
1 |
|
preq2 |
|- ( B = A -> { A , B } = { A , A } ) |
2 |
|
dfsn2 |
|- { A } = { A , A } |
3 |
1 2
|
eqtr4di |
|- ( B = A -> { A , B } = { A } ) |
4 |
3
|
eqcoms |
|- ( A = B -> { A , B } = { A } ) |
5 |
4
|
eqeq2d |
|- ( A = B -> ( P = { A , B } <-> P = { A } ) ) |
6 |
5
|
biimpac |
|- ( ( P = { A , B } /\ A = B ) -> P = { A } ) |
7 |
|
eqimss2 |
|- ( P = { A , B } -> { A , B } C_ P ) |
8 |
7
|
adantr |
|- ( ( P = { A , B } /\ -. A = B ) -> { A , B } C_ P ) |
9 |
6 8
|
ifpimpda |
|- ( P = { A , B } -> if- ( A = B , P = { A } , { A , B } C_ P ) ) |